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Larkin-Ovchinnikov �LO� states typically have a singlet gap that vanishes along real-space lines. These
real-space nodes lead to Andreev midgap states which can serve as a signature of LO pairing. We show that at
these nodes, an odd-parity, spin-triplet component is always induced, leading to a nodeless LO phase. We find
the two-dimensional weak coupling, clean limit s wave phase diagram when this spin-triplet part is included.
The triplet component is large and increases the stability of the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO�
phase. We also show that the spin-triplet contribution pushes the midgap states away from zero energy. Finally,
we show how our results can be explained phenomenologically though Lifshitz invariants. These invariants
provide a simple approach to understand the role of unconventional pairing states, spin-orbit coupling, and
inhomogeneous mixed singlet-triplet states that are not due to an FFLO instability. We discuss our results in the
context of organic superconductors.
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I. INTRODUCTION

There are strong reasons to suspect that the Fulde-Ferrell-
Larkin-Ovchinnikov �FFLO� �Refs. 1 and 2� phases appear
in the quasi-one-dimensional Bechgaard salts �TMTSF�2X
�Refs. 3 and 4� and in the quasi-two-dimensional �2D�
organics �− �BEDT-TTF�2Cu�NCS�2 �Ref. 5� and
�-�BETS�2GaCl4.6 FFLO phases have also been argued to be
of importance in understanding ultracold atomic Fermi
gases7,8 and in the formation of color superconductivity in
high-density quark matter.9 The understanding of these
phases has become a relevant and topical pursuit in physics.
A central result of theoretical studies is the ubiquitous ap-
pearance of the LO phase, a striped superconducting phase in
which the spin-singlet order parameter vanishes spatially
along lines.10 Indeed, it has been suggested that the observa-
tion of Andreev bound states localized at these nodes would
provide strong evidence for LO phase.11,12

Here we argue that the spin-singlet LO phase is generi-
cally nodeless due to the appearance of a spin-triplet compo-
nent at the spatial nodes of the spin-singlet component. We
further show that the triplet component is stabilized by “re-
moving” the Andreev bound states, that is, by pushing these
states away from zero energy.

We begin with a microscopic derivation of our main re-
sults. This derivation considers a 2D superconductor with
spin-singlet s wave and spin-triplet p wave pairing interac-
tions. This is followed by a phenomenological description
that shows how Lifshitz invariants �LI� account for the mi-
croscopic results and allow for a significant generalization to
include the effects of unconventional pairing states, spin-
orbit coupling �SOC�, and inhomogeneous singlet-triplet
mixed states not due to an FFLO instability. While there
have been prior studies of the role of p wave interactions on
the FFLO phase3,13–17 and in a related phase in cold atoms18

and vortex states,19 these studies have focused on the high-
field region near the normal to superconducting phase tran-
sition where the gap is small. Here we examine the low-field
transition from a usual superconductor to a LO phase which
requires a solution of the nonlinear Eilenberger equations.

II. MICROSCOPIC FORMULATION

We use the Eilenberger equations as presented by
Alexander.11,12,20 The central equation for the quasiclassical

Green’s function ĝ�R , k̂ ; i�n� is

�i�n�̂z − �̂ − v̂, ĝ� + iv f · �ĝ = 0, �1�

where k̂ is the direction of the Fermi momentum, �n
=�T�2n+1� are the Matsubara frequencies, and v f is the
Fermi velocity. We denote the three Pauli matrices in
particle-hole space by �x, �y,and �z, and in spin space by
��x ,�y ,�z���. The Green’s function must satisfy Eilen-

berger’s normalization condition ĝ2=−�21̂. The quasiclassi-
cal Green’s function in Nambu space is

ĝ = � g + g · � �f + f · ��i�y

i�y�f� + f� · �� − g + g · �� � . �2�

The Zeeman coupling with the magnetic field is given by

v̂ = ��B · � 0

0 �B · �� � , �3�

where � is the magnetic moment of the electron. The order-
parameter matrix in Nambu space is

�̂�R, k̂� = � 0 �� + � · ��i�y

i�y��� + �� · �� 0
� . �4�

The self-consistency relations are

��R, k̂� = N0�T�
n

	V�k̂, k̂��f�R, k̂�;i�n�
k̂�, �5�

��R, k̂� = N0�T�
n

	V�k̂, k̂��f�R, k̂�;i�n�
k̂�, �6�

where V�k̂ , k̂�� is the pairing interaction, N0 is the density of
states at the Fermi level, and 	 
k̂� denotes the average over
the Fermi surface. To determine which phase is stable, we
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use the free energy derived from the Luttinger-Ward func-
tional by Vorontsov and Sauls21

�f�R� =
1

2
�

0

1

d�T�
n

N0� d2p

2�
Tr�̂�ĝ� −

1

2
ĝ� �7�

g� is an auxiliary propagator obtained from the solution to
the Eilenberger equation with the physical order parameter
scaled by the dimensionless coupling parameter 0	�	1

�i�n�̂z − ��̂ − v̂, ĝ�� + iv f · �ĝ� = 0. �8�

We include both singlet s wave interactions and triplet p
wave interactions. We assume a 2D cylindrical Fermi surface

and a paring interaction V�k̂ , k̂��=Vs+Vtk̂ · k̂�. The relative
strength of triplet interaction is given by the parameter Tp
=Tt /Ts where Ts�Tt� are the Tc for the singlet �triplet� pair-
ing. Due to spin-rotational invariance, we will get equivalent
results for the field chosen along any direction. We therefore
set the field along ẑ direction for convenience. However, we
note that the magnetic field should be in the plane to ensure
that vortices can be ignored. Similarly, we also assume spa-
tial variations along the x̂ direction. The structure of the
Eilenberger equations then ensure that there will be a non-
zero spin-triplet component of the order parameter of the
form d= ẑ�2kx /kf
z�x�= ẑ�2 cos �
z�x�. More specifically
the self-consistency relations become


�R� = N0�TVs�
n
�

0

2� d�

2�
f�R,�;i�n� , �9�


z�R� = N0�TVt�
n
�

0

2�

�2 cos���
d�

2�
fz�R,�;i�n� . �10�

This leads to the gap function 
+�zk
z�x� that appears in the
Eilenberger equations for ĝ.

III. PHASE DIAGRAM

In the vicinity of the transition from the normal state to

the superconducting states, we set �
 ,
z�=eiqx�
̃ , 
̃z� and
find the instability line Hc2 by solving the linear-gap equation
and optimizing Hc2 with respect to q. The order parameter
for a particular q, 
q, is a linear combination of the singlet

and triplet parts, that is, �
̃ , 
̃z�= �� ,�
q. Due to parity sym-
metry, this solution has the same Hc2 as 
−q, which is given

by �
̃ , 
̃z�= �� ,−�
−q. As a consequence, just below Hc2,
two solutions can appear: a solution for which only one of 
q
or 
−q is nonzero �known as the FF phase�; or a solution for
which both are nonzero and 
q= 
−q �known as the LO
phase�. To determine which of these phases appear at Hc2
requires an analysis beyond the nonlinear gap equation.
keeping up to order 
4 in the free energy, we find that both
the FF and the LO phases appear. The FF phase takes up
only a small portion of the phase diagram. Nevertheless, this
has an important physical consequence. In particular, if the
FFLO phase is generated created by a magnetic field applied
in the plane, then an additional magnetic field applied along

the ẑ direction will lead to vortices. For the new order pa-
rameter �= �
q ,
−q�, the general free-energy density can be
written as

f = �
q2 + �
−q2 + 1�4 + 2
q2
−q2

+ ��D
q2 + D
−q2� . �11�

Equation �11� is independent of separate rotations of the
phases of 
q and 
−q, revealing a global U�1��U�1� gauge
invariance. When the vortex core is encircled, the vortices of
a U�1��U�1� theory lead to a 2n� phase change in 
q�r�
and a 2m� phase change in 
−q�r� classified by two integers
�n ,m�, in particular, �1,1�, �1,0�, and �0,1� vortices. The �1,1�
vortex is the usual Abrikosov vortex and it contains the usual
flux quantum �0, however, the �1,0� vortex contains a half-
quantum flux �0 /2. The degeneracy of the FF and LO
phases ensures that there exists a stable vortex lattice of half-
quantum vortices, in which each of the conventional �1,1�
vortices decays into a pair of �1,0� and �0,1� vortices, as
opposed to the usual Abrikosov lattice of full-quantum
vortices.22 This half-quantum lattice will exist in a region
near where these two phases are degenerate.

We also compute the phase boundary from the uniform
superconducting phase to the FFLO phase. In general, this
requires a numerical solution of the Eilenberger equations.
We use an efficient and numerically stable method described
by Schopohl and Maki23 in which the Eilenberger equations
are transformed to Riccati equations. The transition from the
uniform superconducting phase to the FFLO phases is found
by computing the free energy of these two phases. Figure 1
shows the self-consistent order parameter at the transition
from the uniform superconducting state to FFLO state for
Tp=0.5 and T /Ts=0.2. �Microscopic calculations of Aizawa
et al.17 show that a combination of charge fluctuations and
spin-fluctuations allows for strongly enhanced spin-triplet in-
teraction so it is possible to have such large values of Tp.
Note that a smaller Tp does not remove our predicted effects

FIG. 1. �Color online� Singlet �circles solid� and triplet �squares�
order parameters at T=0.2Ts for 2D FFLO superconductors with
Tp=0.5 and �0=v f / �2�Tc�.
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but only makes them smaller�. The spin-singlet order param-
eter is qualitatively similar to previous results on the LO
phase.11 However, the spin-triplet order parameter is maxi-
mum where the spin-singlet order parameter vanishes, re-
moving the spatial-line nodes usually predicted in the LO
phase. Furthermore, we find that if the spin-singlet order
parameter is chosen real, then the spin-triplet order param-
eter is imaginary. Both the phase and the positions of the
maxima of the spin-triplet order parameter are a natural con-
sequence of the phenomenological arguments presented later.
The complete H-T phase diagrams are presented in Fig. 2 for
Tp=0.0 and Tp=0.5.

IV. QUASIPARTICLE PROPERTIES

Previous studies of the LO phase have found midgap An-
dreev states associated with sign change of the spin-singlet
order parameter.11,12 Given the removal of the gap through
the appearance of a spin-triplet order parameter, we compute

the single-particle density of states to see what happens to
these midgap states. The local quasiparticle density of states
�LDOS� at point R with spin direction e can be calculated
from

Ne�R;�� = − � 1

�
Im�g�R, k̂;�� + e · g�R, k̂;����

k̂
, �12�

where i�n→�+ i0+. In Fig. 3, we show the total LDOS at the
nodes of the spin-singlet order parameter including both
spin-up and spin-down excitations. These results compare
the solutions for Tp=0 and Tp=0.5. The LDOS for spin-
down electrons can be found by reflecting LDOS for spin-up
electrons through zero energy. When Tp=0, there exist An-
dreev bound states with energies pinned to the middle of the
gap. This agrees with previous studies.11,12 Once the spin-
triplet part becomes nonzero, these states are shifted away
from zero energy. This shifting of these provides a micro-
scopic mechanism through which the spin-triplet order pa-
rameter is energetically stabilized. We note that a similar
Andreev bound-state removal mechanism has been proposed
to explain the occasional appearance of spin-density wave
�SDW� order at the spin-singlet nodes.24,25 An important dif-
ference with our results is that the spin-triplet order we find
is required to appear by symmetry while the SDW order is
not.

One physical property associated with the Andreev mid-
gap states is the appearance of an increased ferromagnetic
magnetization at the nodes of the spin-singlet order
parameter.11 To investigate the role of the spin-triplet order
parameter on this, we calculate the magnetization and find
that the spatial peak of magnetization and the total magneti-
zation both decrease due to the shift of the Andreev states to
higher energy.

FIG. 2. �Color online� FFLO phase diagrams for Tp=Tt /Ts=0
and Tp=Tt /Ts=0.5. At low fields, the uniform superconducting to
LO-phase transition is second order �circles dot�. When Tp=Tt /Ts

=0.5, a FF phase appears in a small region of the phase diagram
�solid lines�.

FIG. 3. �Color online� Total LDOS for spin-up/down electrons
at nodes of spin-singlet order parameter for Tp=0 �dot-dashed� and
TP=0.5 �solid lines, the y axis has been offset by 1 for clarity�.
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V. PHENOMENOLOGICAL THEORY

A. Lifshitz invariants

We now turn to a phenomenological description of the
above microscopic results. This phenomenological theory
shows that the appearance of a spin-triplet component is ge-
neric and not specific to the microscopic details. The key
point is that the admixture of spin-singlet and spin-triplet
order parameters is due to the existence of Lifshitz invariants
in the Ginzburg-Landau free energy �such invariants where
first discussed by Mineev and Samokhin26�. In particular, if
the spin-triplet order parameter has the form d�k ,R�
=�i,jAi,j�R�x̂ikj and if 
s�R� describes the s wave pairing,
then symmetry allows the following LI �note that a similar
LI has been found in the context of cold atoms18�:

�
i,j

Hi�Ai,j�i� j
s�� + Ai,j
� �i� j
s�� . �13�

If, for example, the spin-singlet order parameter is given by

�R�=
0 cos�qRj�, then this term implies Al,j�R�
=
t0iHlq sin�qRj� with 
t0�0. This LI ensures that a spin-
triplet component is always induced. This captures some of
the main results found in the microscopic theory: the triplet
order parameter is largest where the spin-singlet order pa-
rameter vanishes; and the relative phase between the spin-
singlet and spin-triplet order parameters is � /2. The LI can
also be generalized to unconventional spin-singlet order pa-
rameters and the role of SOC. For example, if the spin-
singlet pairing is dx2−y2, then the following Lifshitz invariant
exists:

�
i

Hi�Ai,x�i�x
d�� + Ai,x
� �i�x
d� − Ai,y�i�y
d�� − Ai,y

� �i�y
d�� .

�14�

This implies f wave spin-triplet pairing appears and once
again, the magnitude of the f wave component is largest

where the d wave component vanishes. This has been argued
to be relevant in the organic �TMTSF�2X.17,27 Furthermore,
for example, in a tetragonal material with spin-singlet s wave
order 
s, spin-orbit interactions allow the following LI:

��
j

�
 j�i� j
s�� − 
 j
��i� j
s�� , �15�

where 
i is defined through d�k ,R�= �
y�R�kx−
x�R�ky�ẑ. In
this case, the triplet component will have the same phase as
the s-wave component �as opposed to the � /2 phase shift for
the field-induced LI�.

B. Singlet to triplet-phase transition

The existence of the LI plays another role not tied to the
LO phase. In particular, it has been argued that a singlet to
triplet-phase transition may occur in �TMTSF�2X supercon-
ductors without the existence of a FFLO phase.3,17 Such a
transition is typically first order. The LI terms can transform
this first-order transition into a pair of second-order transi-
tions between which lies an inhomogeneous singlet-triplet
mixed phase. To model a singlet to triplet transition, consider
the following free-energy density:

f = �s
s2 + �p�
x2 + 
y2� + s
s4 + p�
x2 + 
y2�2

+ �s�
s2 + �p��
x2 + �
y2� , �16�

where we take �s=�s0�T−Ts+�sH
2� and �p=�p0�T−Tp

+�pH2�. Choosing parameters Ts�Tp and �s��p leads to a
low-field s-wave state and a high-field spin-triplet state.
Without the LI, a first-order transition occurs when �s

2 /s
=�p

2 /p. Now consider the role of the LI, near the normal to
superconducting phase boundary, where it is sufficient to
consider the quadratic free energy. The singlet to triplet tran-
sition will occur at T=T� when �s�T��=�p�T��. We can ex-
pand the s wave and p wave order parameters into the Fou-
rier mode qx̂. Close to this point T=T�, when the LI is
included, the quadratic free energy is always minimized by
introducing an inhomogeneous state where 
s�eiqx and 
x
�eiqx and they are both nonzero. This solution intervenes
between the pure singlet and triplet states and the transition
into this inhomogeneous phase is second order from both the
pure-singlet and pure-triplet phases. A stability condition for
this phase is q2=min�va ,0� where va= ��s�p+�p�s
−�2� / �2�s�p�. We can also extend the analysis of this phase
into the whole phase diagram where the quartic terms in the
free energy are also considered. We find that when �2

��s��s−�p�2 / ��p−2�s�, there is a second-order transition
from pure singlet to the intermediate phase, and when �2

��p��s−�p�2 / ��s−2�p�, a second-order transition from
pure-triplet to the intermediate phase occurs. A representa-
tive phase diagram is given by Fig. 4 with parameters chosen
to clearly exhibit the phases ��p0=0.9, Tp=0.8, �p=0.5, �
=0.2, and �s0=Ts=�s=s=p=�s=�p=1�. Consequently,
even if there is no FFLO phase in �TMTSF�2X, it would be
of interest to look for this inhomogeneous singlet-triplet
phase.

FIG. 4. �Color online� Phase diagram of inhomogeneous singlet-
triplet phase with chosen parameters. A first-order transition �solid
line� occurs without the LI. Two second-order transitions �squares�
from the pure-singlet and pure-triplet phases into an inhomoge-
neous singlet-triplet mixed state occur when the LI is included.
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VI. CONCLUSION

In conclusion, we present microscopic arguments that
show that the spatial-line nodes of spin-singlet LO phases are
removed by the appearance of a spin-triplet components. We
show that this can be understood phenomenologically
through the existence of Lifshitz invariants in the free energy
which also ensure that the spin-triplet component always

appears in a spin-singlet FFLO phase. This or related inho-
mogeneous singlet-triplet mixed states are likely to exist in
the organic superconductors �TMTSF�2X.
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